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Abstract. After the initial mixing of cement, an induction period occurs during which its consistency remains
constant. Thickening occurs at the end of this period when the consistency is observed to increase very rapidly.
In this paper we propose a reaction-diffusion model for the hydration of tricalcium silicate, a principal constituent
of cement, which is believed to be responsible for the initial development of its strength. Our model is based
on the assumption that the hydration of cement can be described as a dissolution -precipitation reaction. The
mathematical solutions enable us to determine some of the factors that control the length of the induction period
and make predictions of the ionic concentrations which are in agreement with experimental data.
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1. Introduction

Although it is primarily used in the construction industry, cement is of vital importance during
the construction of oilwells. Once the drilling of an oilwell is complete, a steel casing is
inserted into the borehole and fixed in place by cement. The cement slurry is pumped down
the well bore and rises up from the well base in the annular region between the rock and the
outer casing. The slurry must stay pumpable for sufficient time to permit placement under
given well conditions and it is thus essential that the thickening time of the cement can be
predicted accurately.

On mixing with water, an induction period occurs during which the consistency of the
cement remains constant. Thickening occurs at the end of this period, when the consistency is
observed to increase very rapidly. It has been argued [1], [2], [3] that much of the heat evolved
during the initial stages of hydration can be attributed to the hydration of one of the principal
components of cement, tricalcium silicate. It would therefore seem that an understanding of
the induction period can be gained by studying this simpler hydration reaction. In this paper
we adopt this viewpoint and propose a reaction-diffusion model for the hydration of tricalcium
silicate (C3S). We note that cement chemistry nomenclature is used throughout this paper in
which the following abbreviations are adopted: C= CaO, S= SiO2 and H= H2O.

The two hydration products of C3S are hydrated calcium silicate (C-S-H) and calcium
hydroxide (CH). On contact with water, ions are liberated from the C3S and a very thin layer
of C-S-H forms on the surface of each of the grains. The structural evolution from then on
is the subject of much debate, but the thickening of the cement is believed to occur after the
induction period when a secondary growth of C-S-H causes hydration shells from adjacent
grains to coalesce and the cement to thicken.

In general terms, theories that attempt to explain the hydration mechanism fall into two
categories: protective coating theories and delayed nucleation theories. Of the protective coat-
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ing theories there are two main schools of thought. The first is based on the observation that
C-S-H occurs in a number of morphological forms and was first proposed by Stein and Stevels
[4]. The different types of C-S-H have different permeabilities, and hence act to control the
rate at which the hydration of the cement grains proceeds. A mechanism was suggested by De
Jong et al. [5] in which the C-S-H undergoes three phase transformations during the induction
period. With each transformation it becomes increasingly permeable, which leads to more
rapid hydration of the initial grain of C3S. The rate of transition between the three different
types of C-S-H was predicted to be dependent on the level of calcium hydroxide in solution.
The second protective coating theory is known as the osmotic pressure hypothesis and was
first proposed by Powers [6]. Although it has been favoured over the last few decades [1], [7],
[8], [9] in recent years it has received less attention. On contact with water a thin hydration
shell is again assumed to form at the surface of the grain. Because of their relative size, water
and calcium ions, but not silica ions, can diffuse through this shell. As this process continues
an osmotic pressure builds up because the silica ions cannot escape. The end of the induction
period is marked by the rupture of the shell by osmotic pressure and the formation of the
secondary C-S-H.

The second proposed mechanism involves a delay in the build up of C-S-H, which cor-
responds to the observed induction period. There are many possible mechanisms that could
control the growth of C-S-H. One theory, put forward by Lota et al. [10], is that the growth
of C-S-H on the surface of the grain is dependent on the concentration of calcium ions in
solution. At the end of the induction period the solution becomes supersaturated with respect
to calcium hydroxide, which then precipitates. This increases the rate of formation of C-S-H
and the cement begins to thicken. This view is supported by Damidot and Nonat [11] who
also argue that it is the concentration of calcium ions in solution which is the most important
factor in governing tricalcium silicate hydration.

A few authors have attempted to model the hydration of cement and tricalcium silicate.
Bentz et al. [12] studied the microstructural development during cement hydration using
cellular automaton techniques. This simulation was initiated using a digital image of a real
suspension of cement in water. The microstructural development was then modelled by allow-
ing dissolution, mass transport and chemical reaction to occur on a lattice which was assumed
to be small enough to capture mass transport effectively. They assumed that the cement formed
its hydration products on contact with water and that these hydration products diffused and
subsequently nucleated in the pore solution. The images generated seem to agree well with
real cement samples. A similar model has been proposed by Tzschichholz et al. [13] in which
mass is transported by the diffusion of ions, whilst the hydrated phases are assumed to be
immobile. This simulation began with real initial configurations of anhydrous cement particles
and was able to reproduce qualitatively the basic features of cement hydration. Although this
type of model successfully displays the effect of different variables on the degree of hydration
required for the cement to set, it is not possible to use it to obtain an exact functional relation
between thickening time and the measurable properties of cement.

Conceptual models for the hydration of tricalcium silicate have been developed by Kondo
and Ueda [14] and Pommersheim et al. [15, 16]. Pommersheim et al. considered a spherically-
symmetric grain of tricalcium silicate. They assumed a three layer structure in which the grain
recedes away from its original boundary. At this original boundary they postulated the exis-
tence of a middle or barrier layer. Outside this barrier is an outer hydration product and inside,
an inner hydration product. They assumed that soluble hydrates are produced in the reaction
between water and tricalcium silicate and that these hydrates diffuse outwards and precipitate
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at some point within the three layer structure. They further assumed that the diffusivity of
the chemical species is different in each of the layers and were able to predict the degree
of hydration of the grain with time. Although conceptual models give a description of the
microstructural evolution of a grain of tricalcium silicate based on experimental ideas, they
lack fundamental chemistry. Because of this it is not possible to use these models to make
predictions about the nature of cement hydration. The models discussed also make no attempt
to determine the factors that control the thickening time of cement.

The model proposed in this paper is based on the observation [11], [17] that the hydration
of cement can be described as a dissolution-precipitation mechanism. The fundamental laws
of mass transport and basic cement reaction kinetics are used to construct a reaction-diffusion
model of the hydration of tricalcium silicate. By analysing the model we are able to determine
the factors that control the length of the induction period and thus the thickening time of
cement. We can also make predictions of the behaviour of the ionic concentrations, which
agree with experimental observations.

2. The chemistry of tricalcium silicate hydration

On contact with water, tricalcium silicate dissolves to produce calcium, hydroxide and silica
ions. In this paper we follow the example of Tzschichholz et al. [13] who assumed that ions
are transported in the pore solution by diffusion, and recombine in solution to form immobile
hydration products. Experimental tests carried out by Rugby Cement have shown that, even
when the temperature of the hydration reaction is kept constant, variation in the thickening
times between different cement samples is commonly observed. We thus consider an isother-
mal hydration reaction. The reaction between water and C3S is a surface reaction that can be
described by the equation [11]

C3S+ 3H2O→ 3Ca2+ + 4OH− + H2SiO2−
4 , rate Q1, (1)

where H2SiO2−
4 denotes a silica ion. In the first part of this paper we assume that this reaction

proceeds at a constant rate and for mathematical convenience define the constantk1 such that
Q1 = 8k1. The constantk1 is the flux of each ion into solution from the surface of the grain
and has units of mol m−2 s−1. In Section 6 we modify the reaction rate to describe a decrease
in ion flux as the hydration products build up.

Once produced, the ions diffuse into the surrounding solution and the ionic concentrations
begin to increase. The insoluble hydration products then precipitate out of solution. To avoid
complication, we make the same assumption as Tzschichholz et al. [13] and consider only one
stoichiometric form of C-S-H. Although this may seem to be an oversimplification the results
of the model are found to be unaffected qualitatively if the factor of 1·5 in Equation (2) is
varied between 1 and 3. Experimental measurements show all values of the factor to lie within
this range. The formation of the hydration products from the ions is described by the reactions
[11]

H2SiO2−
4 + 1·5Ca2+ +OH− + H2O→ C-S-H, rate Q2, (2)

Ca2+ + 2OH− → CH. (3)

The C-S-H is always first to precipitate, and it has been suggested [18], [19], [20] that precip-
itation occurs once the solubility product,
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S = [Ca2+]1·5[OH−][H2SiO2−
4 ], (4)

reaches a critical equilibrium value,Seq. Above this threshold it is assumed that precipitation
occurs at a constant rate. As reaction (2) proceeds C-S-H build up in solution. This build up
has been described as a polymerisation reaction [10]. The polymerisation cannot continue
indefinitely and eventually an upper limit is reached which corresponds to the experimen-
tally measured density of C-S-H. To enable a mathematical description we assign C-S-H a
concentration which varies between zero and C-S-Hmax (see Table 1). Precipitation of C-S-H
will therefore occur in regions where the solubility product is above its critical value and the
concentration of C-S-H is below the maximum value, which gives

Q2 = k2H
[[Ca2+]1·5[OH−][H2SiO2−

4 ] − Seq]H[ C-S-Hmax− [C-S-H]] , (5)

wherek2 is a reaction rate constant with units of mol m−3 s−1 and H is the Heaviside function
which takes the value zero for a negative argument and a value of unity for all other arguments.

Reactions (1) and (2) lead to an accumulation of calcium and hydroxide ions in solution,
since they are produced in larger proportions than they are consumed. This process continues
until the solution becomes supersaturated with respect to calcium hydroxide. At this point
global precipitation of calcium hydroxide occurs. It has been suggested by Lota et al. [10]
and Fujii and Kondo [20] that this triggers a large scale precipitation of C-S-H. This rapid
increase in hydration products causes the cement to thicken and hence signifies the end of the
induction period. Rather than incorporate the growth of calcium hydroxide into the model,
we assume that the induction period ends when the concentration of calcium ions reaches this
critical level.

It has been suggested by Pommersheim et al. [15] that the diffusivity of the ions will
be reduced as the hydration shell builds up. We have included this feature in the model by
assuming an expression for the diffusion coefficient of the formD0g([C-S-H]), whereD0 is
a typical ionic diffusivity in water, and the function g decreases monotonically from unity to
ε as the concentration of C-S-H increases. The dimensionless parameterε is chosen so that
the diffusion coefficient varies over approximately one order of magnitude. We also assume
that all the diffusion coefficients are equal. Experimental values for the diffusion coefficients
of the ions in solution show this to be a reasonable assumption [21, p. 67].

Table 1 gives all the available experimental parameters. Unfortunately there seems to be
no published information available on the reaction rate constants. Initially, we compute so-
lutions using estimated values for the reaction rate constants which we later adjust to fit the
experimental data.

3. Mathematical formulation

We feel that there is much to be learned from the study of the hydration of a single particle. To
this end we propose a mathematical model for the hydration of a spherically symmetric grain
of C3S. The concentrations of the various chemical species a distancer from the centre of the
grain a timet after mixing are

a(r, t) = [Ca2+], b(r, t) = [OH−],

c(r, t) = [H2SiO2−
4 ], d(r, t) = [C-S-H].
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Table 1. Typical experimental parameters.

Model parameter Experimental estimate

Typical diffusion coefficient (D0)a 10−10 m2 s−1

Typical grain radius (R0)b 10−5 m

Density of C3Sb 3120 kg m−3

Maximum density of C-S-H (C-S-Hmax) 104 mol m−3

Typical thickening time 2 hours

Equilibrium solubility product (Seq) 38 (mol m−3)3·5

aTaken from Alberty and Silbey [21, p. 67]
bTaken from Taylor [22, Chapter 5]. The molar mass of C-S-H was
taken to be 189g.
cTaken from Tzschichholzet al. [13].

We shall assume thatR0, the radius of the grain, is constant, even though the grain is losing
mass via the dissolution of ions from its surface. This assumption can be justified by consid-
ering data given in [22, p. 150] which show that less than one percent of the C3S is typically
consumed during the induction period.

Equation (1) gives the boundary conditions at the grain surface as

−Da

∂a

∂r

∣∣∣∣
r=R0

= 3k1, −Db

∂b

∂r

∣∣∣∣
r=R0

= 4k1, −Dc

∂c

∂r

∣∣∣∣
r=R0

= k1, (6)

where the diffusion coefficients are

Da = Db = Dc = D0g(d). (7)

To account for the effect of the other grains in the solution we apply no flux boundary
conditions a distancerb from the centre of the grain, which gives

∂a

∂r

∣∣∣∣
r=rb
= ∂b

∂r

∣∣∣∣
r=rb
= ∂c

∂r

∣∣∣∣
r=rb
= 0. (8)

The parameterrb determines the water cement ratio (w/c) of the mixture via

w/c = 1

µ

r3
b − R3

0

R3
0

, (9)

whereµ = 3·12 is the relative density of C3S, which is included so that (9) gives the water
cement ratio by mass. This allows us more easily to compare the predictions of the model with
experimental data.

In the region outside the grain,R0 < r < rb, the concentrations of the four species obey
the reaction-diffusion equations

∂a

∂t
= 1

r2

∂

∂r

(
Dar

2∂a

∂r

)
− 3

2
k2H[a1·5bc − Seq]H[dmax− d], (10)

∂b

∂t
= 1

r2

∂

∂r

(
Dbr

2∂b

∂r

)
− k2H[a1·5bc − Seq]H[dmax− d], (11)
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∂c

∂t
= 1

r2

∂

∂r

(
Dcr

2∂c

∂r

)
− k2H[a1·5bc − Seq]H[dmax− d], (12)

∂d

∂t
= k2H[a1·5bc − Seq]H[dmax− d]. (13)

Since all chemical concentrations are zero initially, the initial conditions are

a(r,0) = b(r,0) = c(r,0) = d(r,0) = 0. (14)

Note that C-S-H, with concentrationd, is immobile, so there is no diffusion in (13).
It is now convenient to define dimensionless concentrations

α = 1

(Seq)
1/3·5a, β = 1

(Seq)
1/3·5b, γ = 1

(Seq)
1/3·5c, δ = 1

(Seq)
1/3·5d, (15)

and the dimensionless length and time

ρ = r

R0
, τ = D0

R2
0

t. (16)

The dimensionless diffusion coefficient is

D = Da

D0
= Db

D0
= Dc

D0
= g(δ). (17)

In terms of these variables, (10), (11), (12) and (13) become

∂α

∂τ
= 1

ρ2

∂

∂ρ

(
Dρ2∂α

∂ρ

)
− 3

2
k̄2H[α1·5βγ − 1]H[δmax− δ], (18)

∂β

∂τ
= 1

ρ2

∂

∂ρ

(
Dρ2∂β

∂ρ

)
− k̄2H[α1·5βγ − 1]H[δmax− δ], (19)

∂γ

∂τ
= 1

ρ2

∂

∂ρ

(
Dρ2∂γ

∂ρ

)
− k̄2H[α1·5βγ − 1]H[δmax− δ], (20)

∂δ

∂τ
= k̄2H[α1·5βγ − 1]H[δmax− δ], (21)

and must be solved subject to the initial conditions,

α(ρ,0) = β(ρ,0) = γ (ρ,0) = δ(ρ,0) = 0, (22)

and boundary conditions,

−D∂α
∂ρ

∣∣∣∣
ρ=1

= 3k̄1,
∂α

∂ρ

∣∣∣∣
ρ=ρb
= 0, (23)

−D∂β
∂ρ

∣∣∣∣
ρ=1

= 4k̄1,
∂β

∂ρ

∣∣∣∣
ρ=ρb
= 0, (24)

−D∂γ
∂ρ

∣∣∣∣
ρ=1

= k̄1,
∂γ

∂ρ

∣∣∣∣
ρ=ρb
= 0. (25)

The various dimensionless parameters are
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δmax= 1

(Seq)1/3·5dmax, k̄1 = k1R0

D0(Seq)1/3·5 , k̄2 = k2R
2
0

D0(Seq)1/3·5 , (26)

andρb = rb/R0, where the constantδmax represents the dimensionless maximum concentra-
tion, or experimentally measured density, of the C-S-H. Preliminary numerical investigations
showed that a variation in the diffusion coefficient over one order of magnitude through the
function g(δ) had no significant effect on the chemical concentrations in the bulk solution. We
therefore usedD = 1 in the results presented below.

4. Numerical method and results

An explicit finite difference scheme was used to compute solutions of (18), (19), (20) and
(21). To reduce the overall number of points that were required, and thereby increase the
computational efficiency of the scheme, we used the function

1ρj = h
[
1+ 5

{
1+ tanh

(
ρj − 4ρb

5

)}]
, (27)

to define the discrete set of points

ρ0 = 1, ρi = 1+
i∑

j=1

1ρj, i = 1,2 . . . N, (28)

at which we computed the chemical concentrations. This ensures that the majority of the
grid points are close to the grain surface where the steepest gradients occur. To discretize the
equations, we wrote all temporal derivatives as first order forward difference approximations
and all spatial derivatives were replaced by three point central difference approximations. At
ρ = ρb, the no flux boundary conditions were discretized using a two point formula and at
ρ = 1 the constant flux boundary conditions were discretized using a three point formula.
The time step was chosen so that 21τ < (1ρ)2min, where(1ρ)min is the minimum spatial
step length. The values of1ρmin and1τ that we used depended on the size of the domain but
typically there wereN = 100 grid points.

As discussed earlier no experimental values are available fork1 andk2 so it is necessary
to estimate these values. The qualitative form of the results presented in this section are
obtained ifk2 � k1. We show later, by fitting our results to those of experiment, that this
is the appropriate parameter range for the hydration reaction.

The initial numerical results usedk1 = 10−5 mol m−2 s−1 andk2 = 1 mol m−3 s−1, which
gives k̄1 = 0·35 andk̄2 = 0·35, andρb = 4, which corresponds to a water cement ratio of
about 20. To demonstrate the affect of imposing a limit on the C-S-H concentration we set C-
S-Hmax= 100 mol m−3 which corresponds to a dimensionless concentration of approximately
35 mol m−3. This enables the main features of the solution to be seen clearly.

Figures 1–4 show dimensionless concentration profiles for calcium ions, silica ions and C-
S-H, respectively, at dimensionless times betweenτ = 40 andτ = 600. The horizontal axes
show the scaled distance from the centre of the grain. The hydroxide ion concentration profiles
display identical characteristics to those of the calcium ions and for brevity have been omitted.
Although it is difficult to identify the concentrations at at particular time in Figures 3 and 4
the results have been displayed so that the overall structure of the solution can be visualised.

The calcium ion concentration decreases monotonically away from the grain surface, be-
comes almost uniform in the bulk solution, and increases linearly with time. Further numerical
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Figure 1. Calcium concentration with̄k1 = 0·35,
k̄2 = 0·35 and C-S-Hmax= 35.

Figure 2.Early silica concentration with̄k1 = 0·35,
k̄2 = 0·35 and C-S-Hmax= 35.

Figure 3.Silica concentration with̄k1 = 0·35, k̄2 =
0·35 and C-S-Hmax= 35.

Figure 4.C-S-H concentration with̄k1 = 0·35, k̄2 =
0·35 and C-S-Hmax= 35.

investigation shows that identical behaviour is observed if there is no limit imposed on the C-
S-H concentration and that the concentration in the bulk solution is unaffected by changing
the parameterk2.

Figure 4 shows C-S-H concentration profiles at different times. After an initial transient
period, the first layer of C-S-H, or hydration shell, is observed to form within a region of
constant width next to the grain surface. Once the maximum concentration is reached the
system goes through another short transient period and then a new hydration shell forms, again
in a region of fixed width. This process is repeated and successively thinner hydration shells
are formed. We define thereaction zoneto be the region in which the solubility product is
above its equilibrium value and the C-S-H concentration is below its maximum value. C-S-H
will only be deposited within the current reaction zone. Figure 4 shows that the reaction zone
moves by discrete amounts away from the grain surface every time the C-S-H concentration
reaches its maximum value.
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The evolution of the silica ions has been illustrated on two separate plots. Figure 2 shows
the early silica concentration, before the C-S-H concentration reaches its maximum value.
After an initial growth in concentration, a spatial concentration profile forms which later
decays with time at a decreasing rate. We note that if no maximum value is imposed on the
C-S-H, the silica concentration tends to a steady state solution forτ � 1. This corresponds
to an equilibrium state where, to a first approximation, the amount of silica being consumed
is equal to that being produced and a linear growth in C-S-H concentration is observed in
region of fixed width. A typical solution when a maximum value is imposed on the C-S-H,
is shown in Figure 3. The solution has a banded structure, with each band corresponding to
the addition of another layer of C-S-H, or hydration shell. This indicates that the silica ion
concentration is approximately constant during the formation of each of the hydration shells.
As successive hydration shells are formed, the decay of the silica concentration takes place
over a longer length scale and the concentration at the surface of the grain increases. This is
because silica is only being consumed within the current reaction zone. Although it has not
been illustrated, the concentration of silica at the edge of the domain decreases monotonically
with time. Further investigations, using a different numerical solution method, suggest that
the same features are observed when the movement of the grain boundary is included in the
model.

In order to explain these features of the solution, note that there is a constant flux of ions
from the surface of the grain in the ratio 3:4:1, calcium:hydroxide:silica. After a short period of
time the solubility product reaches its equilibrium value at the grain surface and C-S-H starts
to form. The system goes through a transient period, at the end of which the first hydration
shell starts to form. Whenτ ≈ 110, the C-S-H reaches its maximum concentration at the grain
surface and the system goes through another transient period after which another hydration
shell forms, and the process repeats itself. Ions are consumed within the reaction zone in
the ratio 1·5:1:1, calcium:hydroxide:silica. This leads to an increase in the concentration of
calcium and hydroxide ions while the system tends to an equilibrium state in which the silica
concentration does not change with time.

Further numerical investigation shows that the width of the hydration shells is a function
of k1/k2. This can be explained by considering a reaction zone which moves by a discrete
amount every time the C-S-H reaches its maximum value. After a layer of C-S-H is deposited
the ions must diffuse through it before they can react. The ratio of production to consumption
of ions is controlled by the ratiok1/k2. If k1/k2 is small, the ions are consumed rapidly, which
leads to a thin reaction zone. This physical argument is shown to be correct by the asymptotic
analysis given in Section 5.

We can now consider the effect of the water cement ratio on the ionic concentrations. We
use the slightly different parameter valuesk1 = 10−5 mol m−2 s−1, k2 = 20 mol m−3 s−1

and C-S-Hmax = 104 mol m−3. As we shall see later, these are close to the experimentally
determined values, butk2 is actually rather larger than this. However, our numerical method is
unable to resolve the hydration shells ifk2 is made any larger. The qualitative features of the
solution are as before.

Figures 5 and 6 show the concentration of the calcium and silica ions at the edge of the
domain,ρ = ρb, for water cement ratios 5, 10 and 20.

The results show an increase in calcium ion concentration as thew/c ratio is decreased.
The peak in the silica concentration represents the time at which precipitation of C-S-H begins.
After this time, the silica ion concentration decreases as thew/c ratio decreases. These trends
have been found experimentally [20], [23] A decrease in thew/c ratio produces larger ionic
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Figure 5. Calcium concentration atρ = ρb for
different water cement ratios.

Figure 6.Silica concentration atρ = ρb for different
water cement ratios.

Figure 7. Schematic diagram of hydration shell formation.

concentrations as there is the same amount of chemical in a smaller volume, as can be seen
for the calcium ion concentration. The silica ion concentration decreases because the large
calcium ion concentration forces the precipitation reaction to proceed more rapidly and hence
consume more silica from solution.

Having determined the qualitative form of the solution, we must now compare the results
with those of experiments and estimate more appropriate values for the rate constantsk1 and
k2. We can do this by constructing an asymptotic solution.

5. Asymptotic solution

We assume a three region structure in which the current reaction zone is the central region.
The nth reaction zone isρn−1 ≤ ρ ≤ ρn, as shown schematically in Figure 7. Behind the
reaction zone (ρ < ρn−1) the C-S-H concentration is above its maximum value and ahead of
the reaction zone (ρ > ρn) the solubility product is below its equilibrium value. Precipitation
of hydration products therefore only occurs in the reaction zone. Numerical solutions have
shown that during the addition of each layer of C-S-H the silica concentration is, to a good
approximation, independent of time. We therefore assume that the silica concentration,γ , is
a function ofρ only, at leading order. Forρn−1 ≤ ρ ≤ ρn, γ satisfies



Cement hydration 53

∂γ

∂τ
= 1

ρ2

∂

∂ρ

(
ρ2∂γ

∂ρ

)
− k̄2 = 0, (29)

subject to continuity conditions atρ = ρn−1 and ρn which are obtained by solving the
diffusion equation in the other two regions. At the surface of the grain,ρ = 1,

∂γ

∂ρ
= −k̄1, (30)

and atρ = ρb
∂γ

∂ρ
= 0. (31)

The solutions in the three regions are

γ (ρ) =



k̄1

ρ
+ C1 ρ < ρn−1

k̄2ρ
2

6
+ C2

ρ
+ C3 ρn−1 ≤ ρ ≤ ρn
C4 ρ > ρn,

(32)

where the constantsC1, C2, C3 andC4 can be fixed in terms of each other by continuity ofγ

and∂γ /∂ρ at ρ = ρn−1 andρ = ρn. This also leads to an expression for the position of the
edge of thenth reaction zone,

ρn = 3
√

1+ 3nk̄1

k̄2
. (33)

It is clear from (33) that each successive layer of C-S-H will be thinner than the last. This
reflects the spherical geometry of the problem. To produce each C-S-H layer the same quantity
of ions is consumed. This means that the volume of each shell is the same, and hence will
become successively thinner. Note that ifk̄2 � nk̄1, the difference between successive shell
thicknesses is approximatelyk̄1/k̄2, consistent with our numerical results.

The concentrationα satisfies the diffusion equation in the two regions on either side of the
reaction zone. Inside the reaction zone,ρn−1 ≤ ρ ≤ ρn, it satisfies

∂α

∂τ
= 1

ρ2

∂

∂ρ

(
ρ2∂α

∂ρ

)
− 3k̄2

2
. (34)

The numerical solutions suggest that an appropriate expansion is

α = α0τ + ᾱ(ρ)+ o(1), (35)

and solving in each of the different regions subject to the appropriate boundary conditions
gives,

α(ρ, τ) =



α0τ + α0ρ
2

6
+ (α0+ 9k̄1)

3ρ
+ A1 1≤ ρ < ρn−1

α0τ + (α0+ 3k̄2/2)

6
+ A2

ρ
+ A3 ρn−1 ≤ ρ ≤ ρn

α0τ + α0ρ
2

6
+ α0ρ

3
b

3ρ
+ A4 ρn < ρ ≤ ρb.

(36)
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Table 2. Comparison of the asymptotic and numer-
ical values for the growth rate of calcium ions in
solution withk̄1 = 0·35 andw/c = 5, 10, 15.

w/c ratio 5 10 20

Numerical growth rate 0·101 0·051 0·025

Asymptotic prediction 0·102 0·051 0·026

The continuity conditions atρ = ρn−1 andρ = ρn fix the constantsA1, A2, A3 andA4 along
with the growth rate of calcium ions,

α0 = 9k̄1

2µw/c
. (37)

The hydroxide ion concentration is found to grow at twice the rate of the calcium ions. Table
2 compares the prediction made by Equation (37) with the numerical results given in Figure 5
for differentw/c ratios and shows that there is good agreement. Although we omit the details,
it is also straightforward to determine the concentration of C-S-H, which is equal to C-S-Hmax

for 1 ≤ ρ ≤ ρn−1, grows linearly with time within the reaction zone, and is an undetermined
function ofρ for ρn ≤ ρ ≤ ρb.

We conclude this section with a discussion of the parameters that control the time for the
calcium concentration to reach a given value and thus control the length of the induction
period. In terms of dimensional variables, (37) shows that the induction period ends when
t = ts, where

ts = 2asµ

9

R0w/c

k1
, (38)

and as is the concentration of calcium ions at the point of supersaturation with respect to
calcium hydroxide formation. The length of the induction period is therefore proportional to a
typical grain radius and the water cement ratio and inversely proportional to the rate constant
k1, which controls the flux of ions from the surface of the grain. In the cement industry the
particle size distribution of a cement sample is normally given as a surface area. Our model
predicts that the thickening time will be proportional to the square root of the surface area
measurement.

6. Comparison with experimental data

We have now predicted a linear growth of calcium ion concentration in the pore solution once
C-S-H precipitation has started. Experimental measurements [19], [20], [23] show that during
a typical hydration reaction slightly different behaviour is observed. Initially there is a rapid
increase in calcium ion concentration. This slows after a short period of time and a linear
growth of calcium ions is then observed, in line with the predictions of our model. This has
been explained by Taylor [24] in terms of the reaction rate of the surface reaction (1). The
rate of this reaction is believed to be dependent on the amount of precipitated C-S-H at the
grain surface. Reaction rate arguments of this type form the basis for protective coating theory
models which were discussed in Section 1.

To incorporate this feature into our model we modify the surface reaction rate so that
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Q1 = 8k1

[
ζ − d(R0, t)(ζ − 1)

dmax

]
, (39)

where the constantζ is greater than unity. Expression (39) describes a flux which decreases
fromQ1 = 8ζk1 when no C-S-H has precipitated toQ1 = 8k1 as the first layer of C-S-H is
deposited and builds up to its maximum concentration. This modified reaction rate was used
to compute the ionic concentrations during the formation of the first hydration shell and the
asymptotic prediction used to obtain the final linear growth rate.

We determined a value fork1 by considering the final linear growth of calcium ions. The
experimental results of Brown et al. [23] show that, after the first minute, the calcium con-
centration increases by approximately 0·5 mol m−3 per minute in a reaction withw/c = 10.
Using this data in (38) shows thatk1 = 1·18× 10−5 mol m−2 s−1, which givesk̄1 = 0·0206.

To fix the constantk2, we used data relating to the initial flux of ions into solution, and
assumed that the calcium ion concentration increased linearly once the initial hydration shell
had formed. This means that the concentration of C-S-H grows linearly at the surface of the
grain. If we can determine from experimental data the time1t between the first precipitation
of C-S-H and the end of the formation of the first hydration shell, we can findk2 using

k2 = dmax

1t
. (40)

The results of Brown et al. [23] show that1τ ≈ 45 seconds, which givesk2 = 222 mol m−3 s−1

and hencēk2 = 75·6.
We obtained an estimate ofζ , which controls the initial flux of ions from the surface of

the grain, using an iterative method. Initially we computed the calcium ion concentration at
t = 60 seconds using two initial estimates forζ . We then compared these values with the
experimental value [23] of 6 mol m−3 and used a bisection method to obtain a more accurate
estimate forζ . Using the experimental data of Brown et al. [23] we found thatζ ≈ 21·8 for a
w/c ratio of 10. The surface reaction therefore slows by a factor of approximately 22 as the
initial hydration shell builds up.

Asymptotic result (33) can be used to obtain an estimate of the thickness of a typical layer
of C-S-H. Using the above values ofk̄1 andk̄2

ρn − ρn−1 ≈ k̄1

k̄2
≈ 3× 10−4. (41)

This length is too small to be resolved using our finite difference scheme, so we had to modify
it. This was done by assuming that the thickness of the first hydration shell is asymptotically
small. We can then incorporate the consumption of ions within the shell into the boundary
condition atρ = 1. The modified boundary conditions at the grain surface are

∂α

∂ρ

∣∣∣∣
ρ=1

= −
[
3k̄1− 3

2
k̄2ρ
∗
]
, (42)

∂β

∂ρ

∣∣∣∣
ρ=1

= − [4k̄1− k̄2ρ
∗] , (43)

∂γ

∂ρ

∣∣∣∣
ρ=1

= − [k̄1− k̄2ρ
∗] , (44)
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Figure 8. Comparison of experimental results with the model predictions for the hydration of a C3S paste with
w/c = 10.

where the asymptotic prediction of the shell width,ρ∗, as calculated in the previous section,
is

ρ∗ =


0 t < t0

3
√

1+ 3Q1

k̄2
− 1 t ≥ t0,

(45)

wheret0 is the time at which C-S-H begins to precipitate. The second terms on the right hand
sides of (42), (43) and (44) are zero whent < t0, and whent > t0 account for the consumption
of ions which occurs during the formation of the first hydration shell. Note that we obtained
the value ofρ∗ by assuming a constant silica concentration during the addition of the first
layer of C-S-H. This means that, although our modified scheme is able to predict the calcium
concentration, it predicts a constant silica concentration fort > t0.

Figure 8 shows a comparison between the model predictions and the experimental data of
Brown et al. [23] for a hydrating C3S paste withw/c = 10. The method described above was
used to obtain the calcium concentration during the first minute of hydration. The final linear
growth at the edge of the domain was then obtained using (38). The model predictions agree
well with the experimental data.

During experiments, the linear growth continues until the solution is supersaturated with
respect to calcium hydroxide. This normally occurs after about 2 hours once the calcium
concentration reaches approximately 45 mol m−3. Since each shell takes 45 s to form, 160
shells will have been formed after 2 h. Using (33) we find that the thickness of the complete
hydration shell at the end of the induction period is approximately 4·2% of the initial grain
radius, in reasonable agreement with experiment.

7. Conclusion

Using the fundamental laws of mass transport and basic cement reaction kinetics, we have
formulated a mathematical model for the microstructural evolution of cement and solved the
resulting equations. The solutions suggest that successive layers of tricalcium silicate build
up on the surface of a spherically symmetric grain of tricalcium silicate and form a hydration
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shell. We have obtained predictions of calcium and silica ion concentrations that agree qual-
itatively with experimental data. Using asymptotic methods, we have found an approximate
analytical expression for the growth rate of the concentration of calcium ions in solution.
We have thereby determined the factors that control the thickening time of cement. We have
also been able to determine the kinetic rate constants from experimental data and, after a
modification to the kinetic scheme, make predictions that agree with experimental results.

The results of our model suggest that the driving mechanism during the initial stages of
cement hydration is a combination of a delayed nucleation and a protective coating mecha-
nism. The results of Damiot et al. [24] show the kinetics of tricalcium silicate hydration to be
strongly dependent on the water cement ratio. Thus although the model results do not support
the osmotic theory of hydration it could be that this description is valid for different water
cement ratios.
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